Meole Brace
C of E Primary School and Nursery

Mathematics Handbook

+-
$\div \times$

Our vision and rationale for Mathematics

Meole Brace mathematics vision statement

Meole Brace Primary School is developing an approach to mathematics which assumes everyone can learn and enjoy mathematics and involves all children developing a deep, connected understanding of mathematical concepts and procedures, using a mastery approach. We aspire to offer the best opportunity for all pupils to persevere to achieve the aims of the National Curriculum in Mathematics - to be fluent in the fundamentals of mathematics, to reason mathematical and to solve problems. As stated in the National Curriculum, the majority of pupils will be working broadly at the same pace; teachers plan for sufficient whole class teaching time to explore a concept or procedure deeply, and in different ways (using variation) through small sequential steps. Mathematical learning behaviours are developed such that pupils focus and engage fully as learners who reason and seek to make connections. Curriculum design ensures a coherent and detailed sequence of essential content responding appropriately to the needs of the children to support sustained progression over time. To achieve this, our curriculum offer ensures pupils develop their declarative, procedural, and conditional knowledge. We develop declarative knowledge by teaching the mathematical facts, concepts and rules, the procedural knowledge by ensuring pupils know how to perform the steps in a process and the conditional knowledge by providing children with the ability to know when to use a procedure, skill, or strategy.

In line with our school value of community, we encourage pupils to support each other in their learning. Discussion and questioning between teachers and pupils, and pupils and pupils, encourages all children to develop a greater depth of understanding through challenging each other's ideas, reasoning, and justifying, using learned mathematical vocabulary. Children are encouraged and supported to explain their thinking to their peers; this promotes a sense of community and encourages respect whilst continuing to develop their own understanding. Teacher questioning during these times also ensures that pupils are being sufficiently challenged, consolidating ideas, making connections across the subject and deepening understanding.

Through a rich and interconnected curriculum, every child is encouraged to persevere to progress in their learning, thinking creatively and flexibly to solve problems. Mathematical concepts are re-visited with the whole class throughout the year to embed knowledge in pupils' memories and develop fluency. As pupils grasp the concepts and procedures being studied, they are given further challenge through extra reasoning tasks and being asked to justify their answer through explanation and models of proof, rather than being accelerated into new content. Teaching provides scaffolding to all children using appropriate representations, consistency in vocabulary and making connections with prior learning. Teachers continually develop their specialist knowledge for teaching mathematics, working collaboratively to refine and improve their teaching to ensure pupils receive high-quality, well-informed teaching.

For children with SEND, we provide an inclusive curriculum which entitles all children to the same experiences. Teachers plan and adapt appropriate tasks to support and develop 'next steps' in learning. To ensure that all children feel part of the class community, children engage in all aspects of the mathematics offered to the rest of the class, so that they are supported to develop understanding of new concepts appropriate to their year group and progress within these throughout the year. At Meole Brace C of E Primary School and Nursery we believe that Mathematics is an essential life skill and is used in every-day life to cook, measure, build, shop and solve problems. We value the problemsolving nature of the subject and develop perseverance through investigation and discussion. Striving to develop a lifelong love of learning, we encourage questioning, and reasoning alongside explanation, to engage the children in the subject and acquire a depth of understanding.

Curriculum Subject Leaders

Mrs Karen Cooke

Miss Louise Morris

Mrs Samantha Cowan

National Curriculum Progression for Mathematics

EYFS	Year I	Year 2	Year 3	Year 4	Year 5	Year 6
Number and place Value						
Counting						
Count objects and understand that counting helps me find the number in a set. Count forwards and backwards to and from 20	count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number			count backwards through zero to include negative numbers	interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	use negative numbers in context, and calculate intervals across zero
	count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward or backward	count from 0 in multiples of $4,8,50$ and 100;	count in multiples of $6,7,9,25$ and 1000	count forwards or backwards in steps of powers of 10 for any given number up to 1000000	
Compare objects and quantities and talk about them using the words: bigger/ smaller, heavier/ lighter, longer/ taller/shorter. Compare sets of objects and numbers and use the language of more than/ fewer	given a number, identify one more and one less		find 10 or 100 more or less than a given number	find 1000 more or less than a given number		

read and write numbers from 1 to 20 in numerals and words.	read and write numbers to at least 100 in numerals and in words	read and write numbers up to 1000 in numerals and in words		read, write, order and compare numbers to at least 1 000000 and determine the value of each digit (appears also in Comparing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Understanding Place Value)
		tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks (copied from Measurement)	read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.	read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	
UNDERSTANDING PLACE VALUE					
	recognise the place value of each digit in a two-digit number (tens, ones)	recognise the place value of each digit in a three-digit number (hundreds, tens, ones)	recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)	read, write, order and compare numbers to at least 1 000000 and determine the value of each digit (appears also in Reading and Writing Numbers) recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (copied from Fractions)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)

talk about 'parts' and 'wholes' when exploring objects (e.g. cake) and sets of objects, and know that the parts of a number can help me remember number facts.	represent and use number bonds and related subtraction facts within 20	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100			
MENTAL CALCULATION					
Solve practical problems including numbers of objects changing, e.g. children coming and going from the painting table,	add and subtract onedigit and two-digit numbers to 20 , including zero	add and subtract numbers using concrete objects, pictorial representations, and mentally, including: $* \quad$ a two-digit \quad number and \quad ones $* \quad$ a two-digit \quad number and \quad tens $* \quad$ two two-digit \quad numbers adding three one- digit numbers	add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds	add and subtract numbers mentally with increasingly large numbers	perform mental calculations, including with mixed operations and large numbers
	read, write and interpret mathematical statements involving addition $(+)$, subtraction (-) and equals (=) signs	show that addition of two numbers can be done in any order (commutative)			use their knowledge of the order of operations to carry out calculations

	(appears also in Written Methods)	and subtraction of one number from another cannot				involving the four operations
WRITTEN METHODS						
	read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation)		add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)	
INVERSE OPERATIONS, ESTIMATING AND CHECKING ANSWERS						
		recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	estimate the answer to a calculation and use inverse operations to check answers	estimate and use inverse operations to check answers to a calculation	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
PROBLEM SOLVING						
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems	solve problems with addition and subtraction: * using concrete objects and pictorial representations, including those involving numbers, quantities and measures	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why	

	applying their increasing knowledge of mental and written methods					
	solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change (copied from Measurement)				Solve problems involving addition, subtraction, multiplication and division	
MULTIPLICATION \& DIVISION FACTS						
	count in multiples of twos, fives and tens (copied from Number and Place Value)	count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward or backward (copied from Number and Place Value)	count from 0 in multiples of $4,8,50$ and 100 (copied from Number and Place Value)	count in multiples of $6,7,9,25$ and 1000 (copied from Number and Place Value)	count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value)	
Solve practical problems including numbers of objects changing, e.g. doubling, halving and sharing.		recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers	recall and use multiplication and division facts for the 3,4 and 8 multiplication tables	recall multiplication and division facts for multiplication tables up to 12×12		
MENTAL CALCULATION						
			write and calculate mathematical statements for multiplication and division using the	use place value, known and derived facts to multiply and divide mentally,	multiply and divide numbers mentally drawing upon known facts	perform mental calculations, including with mixed operations and large numbers

		multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Written Methods)	including: multiplying by 0 and 1 ; dividing by 1; multiplying together three numbers		
	show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot		recognise and use factor pairs and commutativity in mental calculations (appears also in Properties of Numbers)	multiply and divide whole numbers and those involving decimals by 10,100 and 1000	associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. 3/8) (copied from Fractions)
WRITTEN CALCULATION					
	calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\because) and equals (=) signs	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Mental Methods)	multiply two-digit and three-digit numbers by a one-digit number using formal written layout	multiply numbers up to 4 digits by a oneor two-digit number using a formal written method, including long multiplication for two-digit numbers	multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
				divide numbers up to 4 digits by a onedigit number using	divide numbers up to 4-digits by a two-digit whole number using

INVERSE OPERATIONS, ESTIMATING AND CHECKING ANSWERS					
		estimate the answer to a calculation and use inverse operations to check answers (copied from Addition and Subtraction)	estimate and use inverse operations to check answers to a calculation (copied from Addition and Subtraction)		use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy
PROBLEM SOLVING					
solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher		solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects	solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes	solve problems involving addition, subtraction, multiplication and division
				solve problems involving addition involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	
				solve problems involving multiplication and	solve problems involving similar shapes where the

					division, including scaling by simple fractions and problems involving simple rates	scale factor is known or can be found (copied from Ratio and Proportion)
Number: FRACTIONS (including decimals and percentages)						
COUNTING IN FRACTIONAL STEPS						
		Pupils should count in fractions up to 10, starting from any number and using the $1 / 2$ and $2 / 4$ equivalence on the number line (Non Statutory Guidance)	count up and down in tenths	count up and down in hundredths		
RECOGNISING FRACTIONS						
Fold shapes and find half. Use the language of half. Know that halves are equal parts.	recognise, find and name a half as one of two equal parts of an object, shape or quantity	recognise, find, name and write fractions ${ }^{1} / 3^{\prime}{ }^{1} / 4^{\prime}$ ${ }^{2} / 4$ and ${ }^{3} / 4$ of a length, shape, set of objects or quantity	recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators	recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten	recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (appears also in Equivalence)	
			recognise that tenths arise from dividing an object into 10 equal parts and in dividing one - digit numbers or quantities by 10 .			

recognise, find and name a quarter as one of four equal parts of an object, shape or quantity		recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators			
COMPARING FRACTIONS					
		compare and order unit fractions, and fractions with the same denominators		compare and order fractions whose denominators are all multiples of the same number	compare and order fractions, including fractions >1
COMPARING DECIMALS					
			compare numbers with the same number of decimal places up to two decimal places	read, write, order and compare numbers with up to three decimal places	identify the value of each digit in numbers given to three decimal places
ROUNDING INCLUDING DECIMALS					
			round decimals with one decimal place to the nearest whole number	round decimals with two decimal places to the nearest whole number and to one decimal place	solve problems which require answers to be rounded to specified degrees of accuracy
EQUIVALENCE (INCLUDING FRACTIONS, DECIMALS AND PERCENTAGES)					
	write simple fractions e.g. ${ }^{1} / 2$ of $6=3$ and recognise the equivalence of ${ }^{2} / 4$ and $1 / 2$.	recognise and show, using diagrams, equivalent fractions with small denominators	recognise and show, using diagrams, families of common equivalent fractions	identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths	use common factors to simplify fractions; use common multiples to express fractions in the same denomination
			recognise and write decimal equivalents	read and write decimal numbers as	associate a fraction with division and calculate decimal

				of any number of tenths or hundredths	$\begin{gathered} \hline \text { fractions (e.g. } 0.71= \\ \left.71 / /_{100}\right) \end{gathered}$	fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3} / 8 \text {) }$
					recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents	
				recognise and write decimal equivalents to ${ }^{1} / 4^{\prime}{ }^{1} / 2^{\prime}{ }^{3} / 4$	recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 as a decimal fraction	recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.
ADDITION AND SUBTRACTION OF FRACTIONS						
			add and subtract fractions with the same denominator within one whole (e.g. $/ 7{ }_{7}+1 / 7=6 / 7$)	add and subtract fractions with the same denominator	add and subtract fractions with the same denominator and multiples of the same number	add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
					recognise mixed numbers and improper fractions and convert from one form to the other and write	

					mathematical statements >1 as a mixed number (e.g. $\left.{ }^{2} /{ }_{5}+{ }^{4} /{ }_{5}={ }^{6} /{ }_{5}=1^{1} /{ }_{5}\right)$

MULTIPLICATION AND DIVISION OF DECIMALS

				answer is a whole number		
				solve simple measure and money problems involving fractions and decimals to two decimal places.	solve problems which require knowing percentage and decimal equivalents of $1 / 2^{\prime}$, ${ }^{1} / 4^{\prime}{ }^{1} / /_{5^{\prime}}{ }^{2} / /_{5^{\prime}}{ }^{4} /{ }_{5}$ and those with a denominator of a multiple of 10 or 25 .	
RATIO AND PROPORTION						
						solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
						solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison
						solve problems involving similar shapes where the scale factor is known or can be found

					solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.
ALGEBRA					
EQUATIONS					
Explore and notice patterns in shape and numbers.	solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$ (copied from Addition and Subtraction)	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. (copied from Addition and Subtraction)	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction. (copied from Addition and Subtraction)	use the properties of rectangles to deduce related facts and find missing lengths and angles (copied from Geometry: Properties of Shapes)	express missing number problems algebraically
			solve problems, including missing number problems, involving multiplication and division, including integer scaling (copied from Multiplication and Division)		
		recall and use addition and subtraction facts to 20 fluently, and derive and use			find pairs of numbers that satisfy number sentences involving two unknowns

	related facts up to 100 (copied from Addition and Subtraction)				
represent and use number bonds and related subtraction facts within 20 (copied from Addition and Subtraction)					enumerate all possibilities of combinations of two variables
FORMULAE					
			Perimeter can be expressed algebraically as $2(a+$ b) where a and b are the dimensions in the same unit. (Copied from NSG measurement)		use simple formulae
					recognise when it is possible to use formulae for area and volume of shapes (copied from Measurement)
SEQUENCES					
sequence events in chronological order using language such as: before and after, next, first, today, yesterday,	compare and sequence intervals of time (copied from Measurement)				generate and describe linear number sequences

	tomorrow, morning, afternoon and evening (copied from Measurement)					
MEASUREMENT						
COMPARING AND ESTIMATING						
Measure things in different ways using objects and equipment.	compare, describe and solve practical problems for: * lengths and heights [e.g. long/short, longer/shorter, tall/short, double/half] * mass/weight [e.g. heavy/light, heavier than, lighter than] * capacity and volume [e.g. full/empty, more than, less than, half, half full, quarter] time [e.g. quicker, slower, earlier, later]	compare and order lengths, mass, volume/capacity and record the results using >, < and =		estimate, compare and calculate different measures, including money in pounds and pence (also included in Measuring)	calculate and compare the area of squares and rectangles including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres (m^{2}) and estimate the area of irregular shapes (also included in measuring)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm^{3}) and cubic metres (m^{3}), and extending to other units such as mm^{3} and $\mathrm{km}{ }^{3}$.
					estimate volume (e.g. using $1 \mathrm{~cm}^{3}$ blocks to build cubes and cuboids) and capacity (e.g. using water)	
	sequence events in chronological order using language [e.g.	compare and sequence intervals of time	compare durations of events, for example to calculate the time taken			

before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]		by particular events or tasks			
		estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Telling the Time)			
MEASURING and CALCULATING					
measure and begin to record the following: * lengths and heights * mass/weight * capacity and volume * time (hours, minutes, seconds)	choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels	measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity ($1 / \mathrm{ml}$)	estimate, compare and calculate different measures, including money in pounds and pence (appears also in Comparing)	use all four operations to solve problems involving measure (e.g. length, mass, volume, money) using decimal notation including scaling.	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate (appears also in Converting)

			measure the perimeter of simple 2-D shapes	measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres	measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres	recognise that shapes with the same areas can have different perimeters and vice versa
	recognise and know the value of different denominations of coins and notes	recognise and use symbols for pounds (£) and pence (p); combine amounts to make a particular value	add and subtract amounts of money to give change, using both $£$ and p in practical contexts			
		find different combinations of coins that equal the same amounts of money				
		solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change				
				find the area of rectilinear shapes by counting squares	calculate and compare the area of squares and rectangles including	calculate the area of parallelograms and triangles

				using standard units, square centimetres (cm^{2}) and square metres (m^{2}) and estimate the area of irregular shapes recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$) (copied from Multiplication and Division)	
					calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm^{3}) and cubic metres (m^{3}), and extending to other units [e.g. mm^{3} and km^{3}].
					recognise when it is possible to use formulae for area and volume of shapes
TELLING THE TIME					
tell the time to the hour and half past the hour and draw the hands on	tell and write the time to five minutes,	tell and write the time from an analogue clock, including using Roman	read, write and convert time between		

a clock face to show these times.	including quarter past/to the hour and draw the hands on a clock face to show these times.	numerals from I to XII, and 12 -hour and 24 -hour clocks	analogue and digital 12 and 24 -hour clocks (appears also in Converting)		
recognise and use language relating to dates, including days of the week, weeks, months and years	know the number of minutes in an hour and the number of hours in a day. (appears also in Converting)	estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Comparing and Estimating)			
			solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days (appears also in Converting)	solve problems involving converting between units of time	
CONVERTING					
	know the number of minutes in an hour and the number of hours in a day.	know the number of seconds in a minute and the number of days in each month, year and leap year	convert between different units of measure (e.g. kilometre to metre; hour to minute)	convert between different units of metric measure (e.g. kilometre and metre; centimetre and metre;	use, read, write and convert between standard units, converting measurements of length, mass, volume

	3-D shapes [e.g. cuboids (including cubes), pyramids and spheres].	symmetry in a vertical line				
Explore everyday objects and use mathematical language to describe them.		identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces				illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
		identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]				
DRAWING AND CONSTRUCTING						
			draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them	complete a simple symmetric figure with respect to a specific line of symmetry	draw given angles, and measure them in degrees $\left({ }^{\circ}\right)$	draw 2-D shapes using given dimensions and angles
						recognise, describe and build simple 3-D shapes, including making nets (appears also in Identifying Shapes and Their Properties)

			identify horizontal and vertical lines and pairs of perpendicular and parallel lines			
GEOMETRY POSITION AND DIRECTION						
POSITION, DIRECTION AND MOVEMENT						
Use language to describe where something is e.g. on top, next to in front of etc.	describe position, direction and movement, including half, quarter and threequarter turns.	use mathematical vocabulary to describe position, direction and movement including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise)		describe positions on a 2-D grid as coordinates in the first quadrant	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	describe positions on the full coordinate grid (all four quadrants)
				describe movements between positions as translations of a given unit to the left/right and up/down		draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
				plot specified points and draw sides to complete a given polygon		

		order and arrange combinations of mathematical objects in patterns and sequences				
STATISTICS						
INTERPRETING, CONSTRUCTING AND PRESENTING DATA						
Use pictures to represent numbers to show choices as a class	Use pictures to represent numbers to show choices	interpret and construct simple pictograms, tally charts, block diagrams and simple tables	interpret and present data using bar charts, pictograms and tables	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	complete, read and interpret information in tables, including timetables	interpret and construct pie charts and line graphs and use these to solve problems
		ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity				
		ask and answer questions about totalling and comparing categorical data				
SOLVING PROBLEMS						
			solve one-step and twostep questions [e.g. 'How many more?' and 'How many fewer?’] using information presented in scaled bar			

Mathematics Progression of Vocabulary

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | Whabtraction
 Take away
 Minus
 Difference
 Equals Facts
 Problems
 Missing
 number
 problems 2-
 digit number
 Inverse
 Number
 bonds | | | |

| | | Behind
 Beneath
 On top of | | | | | |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Statistics
 Vocabulary | | Order Repeat
 Patterns On
 top of | turn Left
 Right
 Forwards
 Backwards | | | |

Mathematics Progression of Knowledge

	Autumn Term	Spring Term	Summer Term
Year R	Build on previous experiences of number from home and nursery Subitise to 3 Count with I:1 correspondence Composition of number within 5 Compare sets - 'more' and 'Jemer' Positional language Explore 2D shapes Explore, rotate and manipulate objects, exploring different perspectives and orientations Subitise to 5 - conceptual and perceptual Cardinality to 5 Count beyond 5 Link counting to candinality Connect quantities and numbers to-finger patterns Develop language of 'whole' and 'part' Compare sets and recognise same/equal Exploring patterns	Subitise withir and beyond 5 Verbal counting to 20 and beyond Connect quantities to numerals Order numbers, Composition of 6 and 7 as '5 and a bit' Identify missing parts for numbers, to 5 Compare sets-recognise when two-sets are equal or unequal Explore 3D shapes Explore doubles, Cardinality to 10 Composition of odd and ever numbers, linking, to doubles, Composition to 10 Link Cardinality and ondinality through the 'staircase' pattern Compare numbers using reasoning about position in number system. Build and construct using 2D and 3D shapes, describing and explaining choices.	Explore representations of numbers, Compare quantities and numbers, Develop sense of magnitude Decide on when to subitise on count Order sets of objects linking to ordinal system Describe familiar routes using positional language Explore and create own repeating patterns Consolidate counting skills, counting to larger numbers and developing a wider range of counting strategies Secure knowledge of composition to. 10 and number facts, through varied practice Develop conceptual subitising skills including wher using a Rekenrek Explore and describe shapes within shapes,

Year 1	Explore representations of numbers, Compare quantities and numbers, Develop sense of magnitude Decide on when to subitise on count Order sets of objects linking to ordinal system Describe familiar routes using positional language Explore and create own repeating patterns Consolidate counting skills, counting to larger numbers and developing a wider range of counting strategies, Secure knombedge of composition to 10 and number facts, through varied practice Develop conceptual subitising skills including wher using a Rekenrek Explore and describe shapes, within shapes	Numbers 0 to 10 Recognise, compose, decompose and manipulate 2D and 3D shapes Addition and subtraction facts, within 10 Additive structures	Numbers 0 to 20 Unitising and coin recognition Position and direction Time
Year 2	Numbers 10 to 100 Calculations within 20 Fluently add and subtract within 10 Addition and subtraction of two-digit numbers, Introduction to multiplication	Introduction to multiplication Introduction to division structures Shape Addition and subtraction of two-digit numbers	Money Fractions Time Position and direction Multiplication and division - doubling, halving, quotative and partitive division Sense of measure - capacity, volume, mass,

Year 3	Adding and subtracting across, 10 (adding and bridging) Numbers to 1,000 (Ordering, counting, crossing boundaries, calculating and measures)	Right angles, Manipulating the additive relationship and securing mental calculation Column addition 2, 4, 8 times tables Column subtraction	Unit fractions (Comparing, ordering and finding fractions of a whole) Non-unit fractions Parallel and perpendicular sides in polygons Time
Year 4	Reviem of column addition and subtractionl Numbers to 10,000 Perimeter 3,6, 9 times tables	7 times table and patterns Understanding and manipulating multiplicative relationships Understanding and manipulating multiplicative relationships Coordinates,	Reviem of fractions Fractions greater than 1 Symmetry in 2D shapes Time Division with remainders
Year 5	Decimal fractionsl Money Negative numbers, Short multiplication and short division	Area and scaling Calculating with decimal fractions Calculating with decimal fractions Factors, multiples and primes	Fractions Corwerting units, Angles
Year 6	Calculating using knowledge of structures (I) Multiples of 1,000 Numbers up to 10,000,000 Dram, compose and decompose shapes,	Multiplication and division Area, perimeter, position and direction Fractions and percentages	Statistics, Ratio and proportion Calculating using knowledge of structures (2) Solving problems with two unknowns Order of operations Mean average

